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Abstract

Acute lung injury (ALI) remains a significant source of morbidity and mortality in the critically ill patient
population. Defined by a constellation of clinical criteria (acute onset of bilateral pulmonary infiltrates with
hypoxemia without evidence of hydrostatic pulmonary edema), ALI has a high incidence (200,000 per year in the
US) and overall mortality remains high. Pathogenesis of ALI is explained by injury to both the vascular en-
dothelium and alveolar epithelium. Recent advances in the understanding of pathophysiology have identified
several biologic markers that are associated with worse clinical outcomes. Phase III clinical trials by the NHLBI
ARDS Network have resulted in improvement in survival and a reduction in the duration of mechanical
ventilation with a lung-protective ventilation strategy and fluid conservative protocol. Potential areas of future
treatments include nutritional strategies, statin therapy, and mesenchymal stem cells.
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Introduction

Acute lung injury (ALI) and the acute respiratory
distress syndrome (ARDS) describe clinical syndromes

of acute respiratory failure with substantial morbidity and
mortality. Even in patients who survive ALI, there is evidence
that their long-term quality of life is adversely affected.(1,2)

Recent advances have been made in the understanding of the
epidemiology, pathogenesis, and treatment of this disease.
However, more progress is needed to further reduce mortality
and morbidity from ALI and ARDS. Because this syndrome of
acute respiratory failure is so common both in the United
States and worldwide, it is fair to say that ALI=ARDS is an
unmet medical need. In other words, novel therapies need
to be developed to further improve clinical outcomes. This
article provides an overview of the current definitions, path-
ogenesis, and treatment of acute lung injury.

Definition and Epidemiology

Ashbaugh and colleagues,(3) in 1967, were the first to use
the phrase acute respiratory distress syndrome (ARDS) to
describe a cohort of 12 critically ill patients with acute
respiratory failure. In 1994, after decades of different defi-

nitions, the American-European Consensus Conference
Committee recommended the adoption of a consensus defi-
nition for ALI=ARDS. This definition requires the acute onset
of diffuse bilateral pulmonary infiltrates by chest radiograph;
a PaO2=FiO2 �300 for ALI and �200 for ARDS; and a pul-
monary artery wedge pressure (PAWP) �18 or no clinical
evidence of left atrial hypertension.(4) The two primary ad-
vantages of this definition were the simplicity of clinical
application and the ability to quantify the severity of lung
injury. Although this definition has some limitations,(5–8)

specifically in variability of chest radiograph interpretation,
it has been widely adopted for both clinical and research
purposes.

The incidence of ALI=ARDS has been difficult to assess
due to nonuniform definitions, etiologic variations, geo-
graphical variation, inadequate documentation, and under-
recognition of disease entity. In 2003, Goss and colleagues(9)

used the NIH-funded ARDS network database to prospec-
tively identify ALI patients from 1996–1999. They estimated
an incidence of 64.2 cases per 100,000 person-years after
adjusting for biases inherent within their study. More re-
cently, Rubenfeld and colleagues(1) conducted a large pro-
spective, population-based validated cohort study of ALI
incidence in King County, Washington. The crude incidence
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was 78.9 per 100,000 person-years, with an age-adjusted in-
cidence of 86.2 per 100,000 person-years. The strengths of
this study were the prospective design, use of the consensus
definition, and inclusion of a large number of patients from
multiple intensive care units (ICUs) (21 hospitals) for 1 year.
When this data was extrapolated to the United States as a
whole, the investigators estimated that the incidence of ALI is
approximately 200,000 patients with a mortality rate of 40%.(1)

Other factors such as age and associated clinical disor-
ders may impact the incidence of ALI and ARDS. In the
Rubenfeld cohort, similar to other studies,(10,11) the incidence
of ALI increased with age from 16 per 100,000 person-years
for those 15–19 years of age to 306 per 100,000 person-years
for those 75–84 years of age.(1) Predisposing clinical factors
include sepsis, pneumonia, aspiration, trauma, pancreatitis,
blood transfusions, and smoke or toxic gas inhalation.(12)

Severe sepsis and multiple transfusions are associated with
the highest incidence of ARDS; the lowest rates occur in
patients with trauma or drug overdoses.(1,13) For patients
with multiple comorbidities, chronic alcohol abuse, or
chronic lung disease, the risk for lung injury is higher.(12)

ARDS mortality rate has declined over the last 2 decades. In
the 1980s, mortality rates were approximately 64–70%.(14–16)

However, these rates must be interpreted with caution, as
an ALI=ARDS consensus definition was not adopted until
1994. More recent studies now indicate a mortality risk of
29–42%.(1,17–19) The nature of the underlying clinical disorder
is an important determinant of outcome. For example, sepsis
has a higher mortality than major trauma (43 vs. 11%),
whereas pneumonia and aspiration are intermediate risk
factors (36 and 37%, respectively).(20) Other factors that in-
fluence mortality appear to be age and race. Rubenfeld and
colleagues(1) found that mortality was significantly lower in
patients 15–19 years of age (24%) compared to patients
85 years of age or older (60%). This finding was further sup-
ported by Flori et al’s(21) prospective study of 328 pediatric
patients with a reported mortality rate of 22%. Racial in-
equalities in disease burden also occur in African-Americans
and Hispanics who have a higher 60-day mortality rate
(33%) compared to Caucasians (27%.)(22) This increased risk
of death is independent of age, gender, ventilation strategy,
lung injury etiology, comorbidities, or degree of hypoxemia.
For African-Americans, the severity of illness at presentation
appeared to moderate this higher mortality risk. Despite
these different mortality rates in specific age and racial
groups, the overall trend has been a decline in mortality over
the last 2 decades. The primary factors that seem to explain
the reduction in mortality are the use of a lung protective
ventilation strategy, a fluid conservative strategy, and other
improvements in critical care including perhaps more effec-
tive treatment of sepsis. These factors will be discussed more
in the section on treatment.

Pathogenesis

Acute lung injury is a disorder of acute inflammation that
causes disruption of the lung endothelial and epithelial
barriers. The alveolar–capillary membrane is comprised of
the microvascular endothelium, interstitium, and alveolar
epithelium. Cellular characteristics of ALI include loss of
alveolar–capillary membrane integrity, excessive transepi-

thelial neutrophil migration, and release of pro-inflammatory,
cytotoxic mediators (Fig. 1).(12,23) Biomarkers found on the
epithelium and endothelium and that are involved in the
inflammatory and coagulation cascades predict morbidity
and mortality in ALI (Table 1).

Following infection or trauma, upregulation of proin-
flammatory cytokines occurs as a direct response and=or as a
marker of ongoing cellular injury. Meduri et al.(24) found that
baseline and persistently elevated plasma levels of interleu-
kin (IL)-6, IL-8, and tumor necrosis factor (TNF)-a were
strongly predicative of mortality. This finding was further
supported by Parsons and colleagues’(25) large prospective
study involving the ARDS Net trial of lower versus higher
tidal volume. Even after adjustments for ventilator strategy,
severity of illness and organ dysfunction, higher plasma
levels of IL-6 and IL-8 were independently associated with
fewer organ failure- and ventilator-free days, and elevated
IL-6 and IL-8 independently predicted higher mortality.
Several studies have demonstrated that lower tidal volume
ventilation can attenuate the cytokine responses, potentially
reflecting the ability to indirectly modulate the inflammatory
response as well as decreasing ventilation-induced lung
epithelial injury.(25–28) Alterations in coagulation and fibri-
nolysis also occur in lung injury, specifically protein C and
plasminogen activator inhibitor-1. Ware et al.(29) measured
plasma samples of these proteins taken as part of a large,
prospective multicenter clinical trial. Compared to controls
and patients with acute cardiogenic pulmonary edema,
lower plasma levels of protein C and higher plasma levels of
plasminogen activator inhibitor-1 were strong independent
predictors of mortality, as well as ventilator-free and organ-
failure-free days.

Microvascular endothelial injury leads to increased capil-
lary permeability. This alteration in permeability permits
the efflux of protein-rich fluid into the peribronchovascu-
lar interstitium, ultimately crossing the epithelial barrier
into the distal airspaces of the lung.(30) Several studies have
documented increased release of von Willebrand factor
(vWf )(31–33) and upregulation of intracellular adhesion
molecule-1 (ICAM-1)(34–36) following endothelial injury. Both
of these biomarkers are independent predictors of mortality.

Transepithelial neutrophil migration is an important fea-
ture of acute lung injury because neutrophils are the primary
perpetrators of inflammation. Excessive and=or prolonged
activation of neutrophils contributes to basement membrane
destruction and increased permeability of the alveolar–
capillary barrier. Migrating groups of neutrophils result
in the mechanical enlargement of paracellular neutrophil
migratory paths.(37) Neutrophils also release damaging pro-
inflammatory and pro-apoptotic mediators that act on adja-
cent cells to create ulcerating lesions.(37,38) One of the best
studied neutrophil mediators, elastase, appears to degrade
epithelial junctional proteins, possess pro-apoptotic proper-
ties, and perhaps have direct cytotoxic effects on the epi-
thelium.(39–43) In some animal models, neutrophil depletion
can be protective.(37,44–46) However, acute lung injury can
also develop in the absence of circulating neutrophils indi-
cating that neutrophil-independent pathways can also cause
lung injury.(47)

Normally, type I and type II alveolar epithelial cells form
tight junctions with each other, selectively regulating the
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FIG. 1. The normal alveolus (left-hand side) and the injured alveolus in the acute phase of ALI and the acute respiratory
distress syndrome. In the acute phase of the syndrome (right-hand side), there is sloughing of both the bronchial and alveolar
epithelial cell, with the formation of protein-rich hyaline membranes on the denuded basement membrane. Neutrophils are
shown adhering to the injured capillary endothelium and marginating through the interstitium into the air space, which is
filled with protein-rich edema fluid. In the air space, an alveolar macrophage is secreting cytokines, interleukin (IL)-1, IL-6,
IL-8, IL-10, and tumor necrosis factor (TNF)-a, which act locally to stimulate chemotaxis and activate neutrophils. Interleukin-1
can also stimulate the production of extracellular matrix by fibroblasts. Neutrophils can release oxidants, proteases, leuko-
trienes, and other proinflammatory molecules, such as platelet-activating factor (PAF). A number of anti-inflammatory
mediators are also present in the alveolar milieu, including IL-1-receptor antagonists, soluble TNF receptors, autoantibodies
against IL-8, and cytokines such as IL-10 and IL-11 (not shown). The influx of protein-rich edema fluid into the alveolus has
led to the inactivation of a surfactant. ALI, acute lung injury; MIF, macrophage inhibitory factor. Reprinted with the
permission of the publisher.(12) Copyright 2000 Massachusetts Medical Society. All rights reserved.
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epithelial barrier. Increased permeability of this membrane
during the acute phase of lung injury leads to the influx of
protein-rich edema fluid into alveolar space. Type I and II
epithelial injury leads to disruption of normal fluid transport
via downregulated epithelial Na channels and Naþ=Kþ
ATPase pumps, impairing the resolution of alveolar flood-
ing.(12,30) In fact, Lee et al.(48) recently reported that alveolar
edema fluid from ALI patients downregulated the expres-
sion of ion transport genes responsible for vectorial fluid
transport in primary cultures of human alveolar epithelial
type II cells. Conversely, gene expression for inflammatory
cytokines IL-8, TNF-a, and IL-1b increased by 200, 700, and
900%, respectively. In functional studies, net vectorial fluid
transport was also reduced (0.02� 0.05 vs. 1.31� 0.56 mL=
cm2=h, p< 0.02). Alveolar epithelial type II cell injury also
leads to a loss of surfactant production,(49) decreasing overall
pulmonary compliance. Finally, type II epithelial cells nor-
mally drive the epithelial repair process; loss of this function
can lead to disorganized, fibrosing repair.(50)

Alveolar epithelial biomarkers including surfactant D
(SP-D) and the receptor for advanced glycation end-products

(RAGE) are validated biomarkers for lung epithelial
injury. SP-D, secreted by type II epithelial cells, has anti-
inflammatory properties and promotes pathogen phagocy-
tosis and neutrophil recruitment. A prospective study from
the large ARDS Network low tidal volume ventilation cohort
(563 patients) reported that higher baseline plasma SP-D
levels were independently associated with mortality and
fewer ventilator- and organ-failure free days after control-
ling for severity of illness, clinical covariates, and ventilator
strategy.(51) RAGE, a transmembrane immunoglobulin pri-
marily expressed on type I epithelial cells, is elevated in the
plasma and edema fluid of patients with ALI compared to
those with hydrostatic edema.(52) Calfee and colleagues(53)

utilized the ARDS Network plasma samples from the low
versus high tidal volume trial to further investigate the re-
lationship of RAGE and ALI. This study reported that higher
RAGE levels were associated with increased morbidity and
mortality and fewer ventilator-free and organ-failure free
days in the higher tidal volume cohort. These findings per-
sisted after adjustment for age, gender, severity of illness,
and the presence of sepsis or trauma. RAGE levels declined

Table 1. Biomarkers in Clinical Trials of Acute Lung Injury and the Acute Respiratory Distress Syndrome

Pathobiology Biomarker
Abnormality

in ALI=ARDS
Organ failure-free

days
Ventilator-free

days Mortality

Endothelium VWF Increased Reduced(31,32) Reduced(31–33) Predictive(31–33)

Endothelium and epithelium ICAM-1 Increased Reduced(36) Reduced(34,36) Predictive(34–36)

SP-D Increased Reduced(51) Reduced(51) Predictive(51)

RAGE Increased Reduceda(53) Reduceda(53) Predictivea(53)

Inflammation IL-6 Increased Reduced(25) Reduced(25) Predictive(24,25)

IL-8 Increased Reduced(25) Reduced(25) Predictive(24,25)

Coagulation Protein C Decreased Reduced(29) Reduced(29) Predictive(29)

PAI-1 Increased Reduced(29) Reduced(29) Predictive(29)

Notes: VWF, von Willebrand factor antigen; ICAM-1, intercellular adhesion molecule; SP-D, surfactant protein D; RAGE, receptor for
advanced glycation end-products; IL-6, IL-8, interleukins-6, -8; PAI-1, plasminogen activator inhibitor-1

aOutcomes associated with high-tidal volume cohort only.

FIG. 2. The natural history of ALI=ARDS includes resolution and repair versus persistence and progression. Clinical and
epidemiologic studies demonstrate that ALI=ARDS resolves with return of alveolar function to normal or near normal in
some patients, whereas in others there is persistence and=or progression of injury. The outcomes of persistence and pro-
gression include multiple organ failure, fibrosing alveolitis, pulmonary vascular obliteration with pulmonary hypertension,
and death. The genetic, cellular, molecular. and iatrogenic factors that contribute to each of these outcomes remain largely
unknown. In addition, rational mechanism-based strategies that favorably influence repair of the alveolar–capillary mem-
brane are undefined. Reprinted with the permission of the publisher.(23) Copyright 2005 American Thoracic Society. All rights
reserved.
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in both groups; however, there was a 15% greater reduction
( p¼ 0.02) in day 3 RAGE levels in the lower tidal volume
cohort.

Resolution of ALI=ARDS is primarily dependent on a
timely and orderly repair of the alveolar gas exchange
apparatus. For gas exchange to improve, alveolar fluid trans-
port must be upregulated, clearing the airspace of protein-
rich edema fluid, and restoring the normal secretion of surface
active material from alveolar type II cells (Fig. 2).(23,54)

Treatment

Treatment of acute lung injury is based in both ventilatory
and nonventilatory strategies. To date, the most significant
advances in the supportive care of lung injury patients have
been associated with improved ventilator management.
Several clinical trials have shown that a large number of
pharmacologic strategies have not been effective in reducing
mortality.

The best evidence for the value of a lung protective
strategy in patients with ALI is the National Heart, Lung,
and Blood Institute (NHLBI) ARDS network’s multicen-
ter, randomized controlled trial of 861 patients with ALI=
ARDS.(55) In this study, patients were randomized to
6 mL=kg tidal volume versus 12 mL=kg tidal volume with
plateau pressure restrictions (<30 vs. <50 cm H2O). Mortal-
ity in the low tidal volume group was significantly lower
than the high tidal volume group (31 vs. 40%, p¼ 0.007).
Patients ventilated with low tidal volume also had more
ventilator free and nonpulmonary organ failure-free days.
Clinical risk factors including sepsis, aspiration, pneumonia,
and trauma did not affect the efficacy of the low tidal volume
strategy.(20) This strategy even attenuated the inflamma-
tory response (IL-6 and IL-8) associated with acute lung
injury.(25)

Optimal fluid management has been a controversial topic.
In 2006, the NHLBI ARDS Network published the findings
of their prospective, randomized controlled trial of fluid

conservative versus fluid liberal management strategy.(56)

Although there was not a significant difference in mortality,
the fluid conservative strategy improved oxygenation and
severity of lung injury as well as reduced the duration of
mechanical ventilation. The incidence of nonpulmonary
organ failure, specifically renal failure, and shock did not
increase. These findings match well with previously pub-
lished animal and human model studies.(56–60) This study
also reported that the use of a pulmonary artery catheter
(PAC) versus a central venous catheter (CVC) to guide fluid
strategy was not associated with improved clinical out-
comes.(61)

Recent advances in the understanding of the pathophysi-
ology of acute lung injury have led to investigations of
numerous potential pharmacologic treatments. Despite ear-
lier encouraging preclinical evidence, phase III trials have not
supported the use of exogenous surfactant, inhaled nitric
oxide, intravenous prostaglandin E1, glucocorticoids, Keto-
conazole, Lisofylline, N-acetylcysteine, and activated pro-
tein C as treatments for ALI (Table 2).

There has been considerable preclinical data supporting
the potential value of b-2 agonist therapy for the treatment of
ALI.(62–68) These studies reported that b-2 agonists accelerate
the resolution of pulmonary edema by decreasing inflam-
mation and upregulating alveolar salt and water transport,
hastening the resolution of alveolar edema. Recently, a large,
multicenter, randomized clinical trial of an aerosolized b-2
agonist, albuterol, was stopped early for futility. In this
NHLBI ARDS Network trial, the aerosolized b-2 agonist may
not have been effective due to the severity of alveolar epi-
thelial injury or suboptimal drug delivery to the injured
alveoli.(69) There is a large, randomized clinical trial under-
way in the United Kingdom using intravenous salbutamol,
a b-2 agonist. A small, single-center, randomized trial in the
UK recently demonstrated that intravenous salbutamol sig-
nificantly lowered extravascular lung water.(70)

The ARDS Network is currently investigating the poten-
tial benefits of initial trophic enteral feeding followed by

Table 2. Selected Results of Clinical Trials of Pharmacologic Treatment for Acute Lung Injury

and the Acute Respiratory Distress Syndrome

Treatment Year Type of Study No. of Patients Findings Study

Glucocorticoids (acute phase) 1987 Phase 3 99 No benefit Bernard et al.(90)

Glucocorticoids (acute phase) 1988 Phase 3 75 No benefit Luce et al.(91)

Surfactant 1996 Phase 3 725 No benefit Anzueto et al.(92)

N-acetylcysteine 1997 Phase 2 42 No benefit Domenighetti et al.(93)

Glucocorticoids (late phase) 1998 Phase 3 24 Decreased mortality Meduri et al.(94)

Inhaled nitric oxide 1998 Phase 2 177 No benefit Dellinger et al.(95)

Inhaled nitric oxide 1999 Phase 3 203 No benefit Payen et al.(96)

Liposomal PGE 1 (high dose) 1999 Phase 3 350 No benefit Abraham et al.(97)

Ketoconazole 2000 Phase 2 234 No benefit NIH ARDS Network(98)

Liposomal PGE 1 (low dose) 2001 Phase 3 102 No benefit Vincent et al.(99)

Lisofylline 2002 Phase 2-3 235 Stopped for futility NIH ARDS Network(100)

Glucocorticoids (late phase) 2005 Phase 3 180 No benefit Steinberg et al.(101)

Salbutamol IV 2006 Phase 2 40 Reduced EVLW, improved
survival trend

Perkins et al.(70)

Procysteine 2008 Phase 3 215 Stopped for futility Morris et al.(102)

Activated Protein C 2008 Phase 2 75 Stopped for futility Liu et al.(103)

Inhaled Albuterol 2008 Phase 3 279 Stopped for futility ARDS network:
unpublished data
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advancement to full-calorie enteral feeding versus early ad-
vancement to full-calorie enteral feeding in patients with
ALI=ARDS. Most clinicians agree that enteral nutrition is
preferable over parenteral nutrition; however, the optimal
timing, composition, and quantity of enteral feeding remains
controversial. Some studies suggest enteral feeding within
48 hours of initiation of mechanical ventilation reduces
mortality in patients with ARDS, although these findings are
not conclusive.(71–73) Low to moderate volumes of enteral
feed appear to reduce infections and mortality by main-
taining intestinal microvilli height and structure and reduc-
ing inflammation by stimulating secretion of brush border
enzyme, endogenous peptides, secretory IgA, and bile
salts.(74–76)

A novel approach to ALI includes HMG-CoA reductase
inhibitors (statins). Normally used for the prevention or
treatment of cardiovascular disease, statins also possess
significant anti-inflammatory, immunomodulatory, and an-
tioxidant effects. However, it is uncertain how these prop-
erties will translate to the human ALI=ARDS population.
Several observational studies in the human sepsis model, a
known risk factor for ALI, have reported statin users have a
decreased severity of sepsis and mortality despite having
higher baseline comorbidities.(77–81) Preliminary data from
two prospective randomized controlled trials involving sta-
tins and sepsis support these observational studies. Choi
and colleagues(82) noted that hospital mortality was reduced
in the statin group compared to placebo (27.3 vs. 55.9%;
p¼ 0.026). Although Montoya and colleagues(83) did not re-
port a difference in survival, hospital length of stay was
shortened and C reactive protein (CRP) levels decreased in
the simvastatin group. These findings need to be validated in
prospective studies. Kor and colleagues(84) noted no differ-
ence in morbidity and mortality in a retrospective observa-
tional study of 178 patients with ALI=ARDS, 45% of whom
had received statin therapy.

One promising new treatment for ALI is bone marrow-
derived mesenchymal stem cells (MSCs). These cells possess
the ability to differentiate into many types of cells, including
vascular endothelium and alveolar epithelium. MSCs also
secrete paracrine factors that reduce the severity of ALI,(85–88)

including growth factors, factors that regulate barrier per-
meability, and anti-inflammatory cytokines. Gupta and col-
leagues(89) reported the MSCs’ anti-inflammatory properties
in both in vivo and in vitro. In a mouse model, Escherichia coli
endotoxin was instilled into the distal airspaces of the lung,
followed by direct intrapulmonary administration of MSCs
4 h later. MSCs decreased extravascular lung water, alveolar–
capillary permeability, and mortality. These results were
independent of the MSC’s ability to engraft into the lung, a
property suggestive of a paracrine mechanism of action. The
pro-inflammatory response was downregulated, whereas the
anti-inflammatory response upregulated. Several investiga-
tors are working on translating these experimental studies to
phase I and II clinical trials of patients with severe ALI.

Finally, delivery of potential therapies via aerosol to the
distal air spaces of the lung remains a viable delivery route
for both small molecules and proteins. Depending on the
treatment modality, aerosol delivery may avoid systemic
effects and more specifically target the lung. Considerable
expertise has been developed to optimize delivery of small

and large molecules by the aerosol route in mechanically
ventilated patients. This delivery method should be consid-
ered in future investigations of potential pharmacologic
treatments.
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